Cos 2x are equal to cos² x - sin² x, 2.cos² x - 1 or 1 - 2.sin² x.
Proof of Cos 2x's Formula
Way 1
In the above isosceles triangle ABC;
AB=AC=1
BD=DC=sinx
AD=cosx
BE=sin2x
AE=cos2x
EC=1−cos2x.
For right triangle BEC;
(sin2x)2+(1−cos2x)2=(2.sinx)2
sin22x+12−2.1.cos2x+cos22x=4.sin2x
sin22x+1−2.cos2x+cos22x=4.sin2x
sin22x+cos22x+1−2.cos2x=4.sin2x
sin2x+cos2x=1
1+1−2.cos2x=4.sin2x
2−2.cos2x=4.sin2x
2.(1−cos2x)=4.sin2x
1−cos2x=2.sin2x
−cos2x=2.sin2x−1
cos2x=1−2.sin2x
cos2x=sin2x+cos2x−2.sin2x
cos2x=cos2x+sin2x−2.sin2x
cos2x=cos2x−sin2x
sin2x=1−cos2x
cos2x=cos2x−(1−cos2x)
cos2x=cos2x−1+cos2x
cos2x=cos2x+cos2x−1
cos2x=2.cos2x−1
Way 2
In the right triangle ABC above;
AC=1
AB=sinx
BC=cosx
AD=DC=a
BD=cosx−a'dır.
For triangle ABC;
(AB)2+(BC)2=(AC)2
sin2x+cos2x=12
sin2x+cos2x=1
For triangle ABD;
(AB)2+(BD)2=(AD)2
sin2x+(cosx−a)2=a2
sin2x+cos2x−2.cosx.a+a2=a2
sin2x+cos2x−2.cosx.a+a2−a2=0
1−2.cosx.a=0
−2.cosx.a=−1
−2.cosx−2.cosx.a=−2.cosx−1
a=2.cosx1
In triangle ABC;
cos2x=ADBD=acosx−a
cos2x=2.cosx1cosx−2.cosx1
cos2x=2.cosx12.cosx2.cosx.cosx−1
cos2x=2.cosx12.cosx2.cos2x−1
cos2x=2.cos2x−1
cos2x=1−sin2x
cos2x=2.(1−sin2x)−1
cos2x=2−2.sin2x−1
cos2x=2−1−2.sin2x
cos2x=1−2.sin2x
cos2x=sin2x+cos2x−2.sin2x
cos2x=cos2x+sin2x−2.sin2x
cos2x=cos2x−sin2x
Way 3
Formulas used to find the trigonometric value of the sum or difference of two angles with known trigonometric values are called sum-difference formulas. We can find the value of the formula for cos 2x by using the following sum formula for cosine.