
What is the Derivative of Cot u ?
The derivative of cot u is -u'.(1+cot² u).
(cot u)′=−u′.(1+cot2 u)
dxd(cot u)=−u′.(1+cot2 u)
Proof of the Derivative of Cot u
f′ (x)=h→0limhf (x+h)−f (x)
[cot u(x)]′=h→0limhcot u(x+h)−cot u(x)
cot x=sin xcos x
[cot u(x)]′=h→0limhsin u(x+h)cos u(x+h)−sin u(x)cos u(x)
[cot u(x)]′=h→0limhsin u(x).sin u(x+h)sin u(x).cos u(x+h)−cos u(x).sin u(x+h)
[cot u(x)]′=h→0limh.sin u(x).sin u(x+h)sin u(x).cos u(x+h)−cos u(x).sin u(x+h)
sin p.cos q−cos p.sin q=sin (p−q)
[cot u(x)]′=h→0limh.sin u(x).sin u(x+h)sin [u(x)−u(x+h)]
[cot u(x)]′=h→0limh.sin u(x).sin u(x+h)sin {−[u(x+h)−u(x)]}
sin (−x)=−sin x
[cot u(x)]′=h→0limh.sin u(x).sin u(x+h)−sin [u(x+h)−u(x)]
[cot u(x)]′=h→0lim[u(x+h)−u(x)].h.sin u(x).sin u(x+h)−[u(x+h)−u(x)].sin [u(x+h)−u(x)]
[cot u(x)]′=h→0lim {h−[u(x+h)−u(x)].u(x+h)−u(x)sin [u(x+h)−u(x)].sin u(x).sin u(x+h)1}
[cot u(x)]′=h→0limh−[u(x+h)−u(x)].h→0limu(x+h)−u(x)sin [u(x+h)−u(x)].h→0limsin u(x).sin u(x+h)1
[cot u(x)]′=−h→0limhu(x+h)−u(x).h→0limu(x+h)−u(x)sin [u(x+h)−u(x)].h→0limsin u(x).sin u(x+h)1
h→0 [u(x+h)−u(x)=h]
[cot u(x)]′=−h→0limhu(x+h)−u(x).h→0limhsin h.h→0limsin u(x).sin u(x+h)1
t→0limtsin t=1
[cot u(x)]′=−u′(x).1.sin u(x).sin u(x+0)1
[cot u(x)]′=−u′(x).1.sin u(x).sin u(x)1
[cot u(x)]′=−sin2 u(x)u′(x).1.1
[cot u(x)]′=−sin2 u(x)u′(x)
u(x)=u
u′(x)=u′
(cot u)′=−sin2 uu′
(cot u)′=−u′.sin2 u1
(cot u)′=−u′.(sin u1)2
sin x1=csc x
(cot u)′=−u′.csc2 u
(cot u)′=−u′.sin2 u1
1=sin2 x+cos2 x
(cot u)′=−u′.(sin2 usin2 u+cos2 u)
(cot u)′=−u′.(sin2 usin2 u+sin2 ucos2 u)
(cot u)′=−u′.[1+(sin ucos u)2]
(cot u)′=−u′.(1+cot2 u)
(cot u)′=−u′.(1+cot2 u)=−sin2 uu′=−u′.csc2 u
Question
f(x)=cot 3x⇒f′(x)= ?
Answer
(cot u)′=−u′.(1+cot2 u)
(cot 3x)′=−(3x)′.(1+cot2 3x)
(cot 3x)′=−3.(1+cot2 3x)
(cot 3x)′=−3.1−3.cot2 3x
(cot 3x)′=−3−3.cot2 3x