derivative of radical functions
n > 1 : n ∈ N⁺, g(x) > 0; f(x) = ⁿ√g(x) ⇒ f'(x) = g'(x)/nⁿ√[g(x)]ⁿ⁻¹.
Pow
@powpoof of derivative of radical functions
f(x)=ng(x)⇒f′(x)=nn(g(x))n−1g′(x)(n>1:n∈N+,g(x)>0). We can prove why the derivative of ng(x) is equal to nn(g(x))n−1g′(x) in several ways, some of which we will show below.
Way 1
f′(x)=h→0limhf(x+h)−f(x)
(ng(x))′=h→0limhng(x+h)−ng(x)
(ng(x))′=h→0limhng(x+h)−ng(x).n[g(x+h)]n−1+n[g(x+h)]n−2.ng(x)+n[g(x+h)]n−3.n[g(x)]2+...+n[g(x)]n−1n[g(x+h)]n−1+n[g(x+h)]n−2.ng(x)+n[g(x+h)]n−3.n[g(x)]2+...+n[g(x)]n−1
(ng(x))′=h→0limh.(n[g(x+h)]n−1+n[g(x+h)]n−2.ng(x)+n[g(x+h)]n−3.n[g(x)]2+...+n[g(x)]n−1)(ng(x+h)−ng(x)).(n[g(x+h)]n−1+n[g(x+h)]n−2.ng(x)+n[g(x+h)]n−3.n[g(x)]2+...+n[g(x)]n−1)
an−bn=(a−b).(an−1+an−2.b+an−3.b2+...+a2.bn−3+a.bn−2+bn−1)
(ng(x))′=h→0limh.(n[g(x+h)]n−1+n[g(x+h)]n−2.ng(x)+n[g(x+h)]n−3.n[g(x)]2+...+n[g(x)]n−1)n[g(x+h)]n−n[g(x)]n
(ng(x))′=h→0limh.(n[g(x+h)]n−1+n[g(x+h)]n−2.ng(x)+n[g(x+h)]n−3.n[g(x)]2+...+n[g(x)]n−1)g(x+h)−g(x)
(g(x))′=h→0limhg(x+h)−g(x).n[g(x+h)]n−1+n[g(x+h)]n−2.ng(x)+n[g(x+h)]n−3.n[g(x)]2+...+n[g(x)]n−11
(g(x))′=h→0limhg(x+h)−g(x).h→0limn[g(x+h)]n−1+n[g(x+h)]n−2.ng(x)+n[g(x+h)]n−3.n[g(x)]2+...+n[g(x)]n−11
(g(x))′=g′(x).n[g(x+0)]n−1+n[g(x+0)]n−2.ng(x)+n[g(x+0)]n−3.n[g(x)]2+...+n[g(x)]n−11
(g(x))′=g′(x).n[g(x)]n−1+n[g(x)]n−2.ng(x)+n[g(x)]n−3.n[g(x)]2+...+n[g(x)]n−11
(g(x))′=g′(x).n[g(x)]n−1+n[g(x)]n−2.g(x)+n[g(x)]n−3.[g(x)]2+...+n[g(x)]n−11
(g(x))′=g′(x).n[g(x)]n−1+n[g(x)]n−2+1+n[g(x)]n−3+2+...+n[g(x)]n−11
(g(x))′=g′(x).n tanen[g(x)]n−1+n[g(x)]n−1+n[g(x)]n−1+...+n[g(x)]n−11
(g(x))′=g′(x).n.n[g(x)]n−11
(g(x))′=n.n[g(x)]n−1g′(x).1
(g(x))′=n.n(g(x))n−1g′(x)
Way 2
f(x)=ng(x)
[f(x)]n=(ng(x))n
[f(x)]n=n[g(x)]n
[f(x)]n=g(x)
{[f(x)]n}′=[g(x)]′
{[f(x)]n}′=g′(x)
f(x)=[g(x)]n⇒f′(x)=n.[g(x)]n−1.g′(x)
n.[f(x)]n−1.f′(x)=g′(x)
f′(x)=n.[f(x)]n−1g′(x)
f′(x)=n.(ng(x))n−1g′(x)
f′(x)=n.n[g(x)]n−1g′(x)
Way 3
ng(x)=[g(x)]n1
lnng(x)=ln[g(x)]n1
lnng(x)=n1.[lng(x)]
(lnng(x))′={n1.[lng(x)]}′
(lnng(x))′=n1.[lng(x)]′
f(x)=lng(x)⇒f′(x)=g(x)g′(x)
ng(x)(ng(x))′=n1.g(x)g′(x)
ng(x)(ng(x))′=n.g(x)1.g′(x)
ng(x)(ng(x))′=n.g(x)g′(x)
(ng(x))′=ng(x).n.g(x)g′(x)
(ng(x))′=n.g(x)ng(x).g′(x)
(ng(x))′=n.n[g(x)]nng(x).g′(x)
(ng(x))′=n.n[g(x)]n−1.g(x)ng(x).g′(x)
(ng(x))′=n.n[g(x)]n−1.ng(x)ng(x).g′(x)
(g(x))′=n.n[g(x)]n−1g′(x)
Published Date:
April 25, 2024
Updated Date:
April 25, 2024