
Sin x'in İntegrali Nedir ?
Sin x'in integrali -cos x'tir.
∫sin x dx=−cos x+c
Sin x'in İntegralini Bulma
1. Yol

Yukarıdaki ABC dik üçgeninde;
sin x=11−u2=1−u2
cos x=1u=u
∫sin x dx= ?
sin x=1−u2
d(sin x)=d(1−u2)
(sin x)′ dx=(1−u2)′ du
(sin x)′=cos x
f(x)=u(x)⇒f′(x)=2u(x)u′(x)
cos x dx=21−u2(1−u2)′ du
u dx=21−u2−2u du
dx=2u1−u2−2u du
∫sin x dx=∫1−u2.1−u2−du
∫sin x dx=−∫du
∫sin x dx=−u+c
∫sin x dx=−cos x+c
2. Yol
∫sin x dx= ?
sin 2x=2.sin x.cos x
∫sin x dx=∫2.sin 2x.cos 2x dx
sin 2x=u
d (sin 2x)=du
(sin 2x)′ dx=du
(sin ax)′=a.cos ax
21cos 2x dx=du
cos 2x dx=2 du
∫sin x dx=∫2.u.2 du
∫sin x dx=∫4u du
∫sin x dx=24u2+c
∫sin x dx=2u2+c
∫sin x dx=2sin2 2x+c
1−2sin2 x=cos 2x
1−2sin2 2x=cos x
−(1−2sin2 2x)=−cos x
2sin2 2x−1=−cos x
c∈R,c=−1⇒∫sin x dx=2sin2 2x−1
∫sin x dx=−cos x
3. Yol
sin x=x−3!x3+5!x5−7!x7+9!x9−...
cos x=1−2!x2+4!x4−6!x6+8!x8−...
∫sin x dx=∫(x−3!x3+5!x5−7!x7+9!x9−...) dx
∫sin x dx=(2x2−4.3!x4+6.5!x6−8.7!x8+10.9!x10−...)+c
∫sin x dx=(2!x2−4!x4+6!x6−8!x8+10!x10−...)+c
c∈R,c=−1⇒∫sin x dx=(2!x2−4!x4+6!x6−8!x8+10!x10−...)−1
∫sin x dx=−1+2!x2−4!x4+6!x6−8!x8+10!x10−...
∫sin x dx=−(1−2!x2+4!x4−6!x6+8!x8−10!x10+...)
∫sin x dx=−cos x