Tan 2x'in Türevi Nedir ?
Tan 2x'in türevi 2.(1+tan² 2x)'tir.
(tan 2x)′=2.(1+tan2 2x)
dxd(tan 2x)=2.(1+tan2 2x)
Tan 2x'in Türevinin İspatı
1. Yol
f′ (x)=h→0limhf (x+h)−f (x)
(tan 2x)′=h→0limhtan 2(x+h)−tan 2x
(tan 2x)′=h→0limhtan (2x+2h)−tan 2x
tan (p+q)=1−tan p.tan qtan p+tan q
(tan 2x)′=h→0limh1−tan 2x.tan 2htan 2x+tan 2h−tan 2x
(tan 2x)′=h→0limh1−tan 2x.tan 2htan 2x+tan 2h−tan 2x.(1−tan 2x.tan 2h)
(tan 2x)′=h→0limh1−tan 2x.tan 2htan 2x+tan 2h−tan 2x+tan2 2x.tan 2h
(tan 2x)′=h→0limh1−tan 2x.tan 2htan 2h+tan2 2x.tan 2h
(tan 2x)′=h→0limh1−tan 2x.tan 2htan 2h.(1+tan2 2x)
(tan 2x)′=h→0lim [h1.1−tan 2x.tan 2htan 2h.(1+tan2 2x)]
(tan 2x)′=h→0limh.(1−tan 2x.tan 2h)tan 2h.(1+tan2 2x)
(tan 2x)′=h→0lim2.h.(1−tan 2x.tan 2h)2.tan 2h.(1+tan2 2x)
(tan 2x)′=2.h→0lim2h.(1−tan 2x.tan 2h)tan 2h.(1+tan2 2x)
(tan 2x)′=2.h→0lim (2htan 2h.1−tan 2x.tan 2h1+tan2 2x)
(tan 2x)′=2.h→0lim2htan 2h.h→0lim1−tan 2x.tan 2h1+tan2 2x
h→0 (2h=h)
(tan 2x)′=2.h→0limhtan h.h→0lim1−tan 2x.tan h1+tan2 2x
t→0limttan t=1
(tan 2x)′=2.1.1−tan 2x.tan 01+tan2 2x
tan 0=0
(tan 2x)′=2.1.1−tan 2x.01+tan2 2x
(tan 2x)′=2.1.1−01+tan2 2x
(tan 2x)′=2.1.11+tan2 2x
(tan 2x)′=2.1.(1+tan2 2x)
(tan 2x)′=2.(1+tan2 2x)
2. Yol
f′ (x)=h→0limhf (x+h)−f (x)
(tan 2x)′=h→0limhtan 2(x+h)−tan 2x
(tan 2x)′=h→0limhtan (2x+2h)−tan 2x
tan x=cos xsin x
(tan 2x)′=h→0limhcos (2x+2h)sin (2x+2h)−cos 2xsin 2x
(tan 2x)′=h→0limhcos 2x.cos (2x+2h)sin (2x+2h).cos 2x−cos (2x+2h).sin 2x
sin p.cos q−cos p.sin q=sin (p−q)
(tan 2x)′=h→0limhcos 2x.cos (2x+2h)sin (2x+2h−2x)
(tan 2x)′=h→0limhcos 2x.cos (2x+2h)sin 2h
(tan 2x)′=h→0lim[h1.cos 2x.cos (2x+2h)sin 2h]
(tan 2x)′=h→0limh.cos 2x.cos (2x+2h)sin 2h
(tan 2x)′=h→0lim2.h.cos 2x.cos (2x+2h)2.sin 2h
(tan 2x)′=2.h→0lim2h.cos 2x.cos (2x+2h)sin 2h
(tan 2x)′=2.h→0lim [2hsin 2h.cos 2x.cos (2x+2h)1]
(tan 2x)′=2.h→0lim2hsin 2h.h→0limcos 2x.cos (2x+2h)1
h→0 (2h=h)
(tan 2x)′=2.h→0limhsin h.h→0limcos 2x.cos (2x+h)1
t→0limtsin t=1
(tan 2x)′=2.1.cos 2x.cos (2x+0)1
(tan 2x)′=2.1.cos 2x.cos 2x1
(tan 2x)′=cos2 2x2.1.1
(tan 2x)=cos2 2x2
(tan 2x)′=2.cos2 2x1
(tan 2x)′=2.(cos 2x1)2
cos x1=sec x
(tan 2x)′=2.sec2 2x
(tan 2x)′=2.(1+tan2 2x)=cos2 2x2=2.sec2 2x
Published Date:
June 13, 2021
Updated Date:
April 14, 2025