
Tan x'in İntegrali Nedir ?
Tan x'in integrali -ln |cos x|'tir.
∫tan x dx=−ln ∣cos x∣+c=ln ∣sec x∣+c
Tan x'in İntegralini Bulma
1. Yol
∫tan x dx= ?
tan x=cos xsin x
∫tan x dx=∫cos xsin x dx
cos x=u
d (cos x)=du
(cos x)′ dx=du
(cos x)′=−sin x
−sin x dx=du
sin x dx=−du
∫tan x dx=∫u−du
∫tan x dx=−∫udu
∫xdx=ln ∣x∣+c
∫tan x dx=−ln ∣u∣+c
∫tan x dx=−ln ∣cos x∣+c
∫tan x dx=ln ∣cos−1 x∣+c
∫tan x dx=ln ∣cos x1∣+c
cos x1=sec x
∫tan x dx=ln ∣sec x∣+c
2. Yol
∫tan x dx=∫sec xsec x.tan x dx
∫tan x dx=∫sec xsec x.tan x dx
sec x=u
d (sec x)=du
(sec x)′ dx=du
(sec x)′=sec x.tan x
sec x.tan x dx=du
∫tan x dx=∫udu
∫tan x dx=ln ∣u∣+c
∫tan x dx=ln ∣sec x∣+c
3. Yol

Yukarıdaki ABC dik üçgeninde;
tan x=1u=u
∫tan x dx= ?
tan x=u
d (tan x)=du
(tan x)′ dx=du
(tan x)′=1+tan2 x
(1+tan2 x) dx=du
(1+u2) dx=du
dx=1+u2du
∫tan x dx=∫u.1+u2du
∫tan x dx=∫1+u2u du
∫tan x dx=∫2.(1+u2)2.u du
∫tan x dx=21∫1+u22u du
1+u2=v
d (1+u2)=dv
(1+u2)′ du=dv
2u du=dv
∫tan x dx=21∫vdv
∫tan x dx=21ln ∣v∣+c
∫tan x dx=ln ∣v21∣+c
∫tan x dx=ln ∣v∣+c
∫tan x dx=ln ∣1+u2∣+c
Yukarıdaki ABC dik üçgeninde;
sec x=11+u2=1+u2
∫tan x dx=ln ∣sec x∣+c