Cot x'in Türevi Nedir ?
Cot x'in türevi -(1+cot² x)'dir.
f(x)=cot x⇒f′(x)=−(1+cot2 x)=−csc2 x=−sin2 x1
dxd(cot x)=−(1+cot2 x)=−csc2 x=−sin2 x1
Cot x'in Türevinin İspatı
1. Yol
f′ (x)=h→0limhf (x+h)−f (x)
(cot x)′=h→0limhcot (x+h)−cot x
cot (p+q)=cot p+cot qcot p.cot q−1
(cot x)′=h→0limhcot x+cot hcot x.cot h−1−cot x
(cot x)′=h→0limhcot x+cot hcot x.cot h−1−cot x.(cot x+cot h)
(cot x)′=h→0limhcot x+cot hcot x.cot h−1−cot2 x−cot x.cot h
(cot x)′=h→0limhcot x+cot h−(1+cot2 x)
(cot x)′=h→0lim [h1.cot x+cot h−(1+cot2 x)]
(cot x)′=h→0limh.(cot x+cot h)−(1+cot2 x)
(cot x)′=h→0limh.cot x+h.cot h−(1+cot2 x)
(cot x)′=h→0lim h.cot x+h→0lim h.cot h−(1+cot2 x)
(cot x)′=cot x.h→0lim h+h→0lim h.cot h−(1+cot2 x)
t→0lim t.cot t=1
(cot x)′=cot x.0+1−(1+cot2 x)
(cot x)′=0+1−(1+cot2 x)
(cot x)′=1−(1+cot2 x)
(cot x)′=−(1+cot2 x)
2. Yol
f′ (x)=h→0limhf (x+h)−f (x)
(cot x)′=h→0limhcot (x+h)−cot x
cot x=sin xcos x
(cot x)′=h→0limhsin (x+h)cos (x+h)−sin xcos x
(cot x)′=h→0limhsin x.sin (x+h)sin x.cos (x+h)−cos x.sin (x+h)
sin p.cos q−cos p.sin q=sin (p−q)
(cot x)′=h→0limhsin x.sin (x+h)sin [x−(x+h)]
(cot x)′=h→0limhsin x.sin (x+h)sin (x−x−h)
(cot x)′=h→0limhsin x.sin (x+h)sin (−h)
sin (−x)=−sin x
(cot x)′=h→0limhsin x.sin (x+h)−sin h
(cot x)′=h→0lim [h1.sin x.sin (x+h)−sin h]
(cot x)′=h→0limh.sin x.sin (x+h)−sin h
(cot x)′=h→0lim [h−sin h.sin x.sin (x+h)1]
(cot x)′=h→0limh−sin h.h→0limsin x.sin (x+h)1
(cot x)′=−h→0limhsin h.h→0limsin x.sin (x+h)1
t→0limtsin t=1
(cot x)′=−1.sin x.sin (x+0)1
(cot x)′=−sin x.sin (x+0)1
(cot x)′=−sin x.sin x1
(cot x)′=−sin2 x1
3. Yol
cot x=sin xcos x
(cot x)′=(sin xcos x)′
(vu)′=v2u′.v−v′.u
(cot x)′=sin2 x(cos x)′.sinx−(sin x)′.cos x
(sin x)′=cos x (cos x)′=−sin x
(cot x)′=sin2 x−sin x.sin x−cos x.cos x
(cot x)′=sin2 x−sin2 x−cos2 x
(cot x)′=sin2 x−(sin2 x+cos2 x)
(cot x)′=−sin2 xsin2 x+cos2 x
sin2 x+cos2 x=1
(cot x)′=−sin2 x1
(cot x)′=−(sin x1)2
sin x1=csc x
(cot x)′=−csc2 x
Soru
y=cot 5x⇒y′= ?
Cevap
y=cot 5x
dy=d(cot 5x)
dy=(cot 5x)′ dx
dxdy=(cot 5x)′
u=5x
du=d(5x)
du=(5x)′ dx
du=5 dx
dxdu=5
y=cot u
dy=d(cot u)
dy=(cot u)′ du
dy=−(1+cot2 u) du
dudy=−(1+cot2 u)
dxdu.dudy=dxdy
5.−(1+cot2 u)=(cot 5x)′
−5.(1+cot2 u)=(cot 5x)′
−5.(1+cot2 5x)=(cot 5x)′
f (x)=cot u⇒f′ (x)=−u′.(1+cot2 u)
f(x)=cot 5x
f′(x)=−(5x)′.(1+cot2 5x)
f′(x)=−5.(1+cot2 5x)
Published Date:
March 14, 2021
Updated Date:
January 11, 2025