ⁿ√u'nun türevi u'/(n.ⁿ√uⁿ⁻¹)'dir.
Köklü İfadelerin Türevi Nedir ? ⁿ√u'nun türevi u'/(n.ⁿ√uⁿ⁻¹)'dir.
( n u ) ′ = n . n u n − 1 u ′
d x d ( n u ) = n . n u n − 1 u ′
Köklü İfadelerin Türevinin İspatı 1. Yol f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( n u ( x ) ) ′ = h → 0 lim h n u ( x + h ) − n u ( x ) ( n u ( x ) ) ′ = h → 0 lim h . ( n [ u ( x + h ) ] n − 1 + n [ u ( x + h ) ] n − 2 . n u ( x ) + n [ u ( x + h ) ] n − 3 . n [ u ( x ) ] 2 + ... ) ( n u ( x + h ) − n u ( x ) ) . ( n [ u ( x + h ) ] n − 1 + n [ u ( x + h ) ] n − 2 . n u ( x ) + n [ u ( x + h ) ] n − 3 . n [ u ( x ) ] 2 + ... )
( a − b ) . ( a n − 1 + a n − 2 . b + a n − 3 . b 2 + ... + a 2 . b n − 3 + a . b n − 2 + b n − 1 ) = a n − b n ( n u ( x ) ) ′ = h → 0 lim h . ( n [ u ( x + h ) ] n − 1 + n [ u ( x + h ) ] n − 2 . n u ( x ) + n [ u ( x + h ) ] n − 3 . n [ u ( x ) ] 2 + ... ) n [ u ( x + h ) ] n − n [ u ( x ) ] n ( n u ( x ) ) ′ = h → 0 lim h . ( n [ u ( x + h ) ] n − 1 + n [ u ( x + h ) ] n − 2 . n u ( x ) + n [ u ( x + h ) ] n − 3 . n [ u ( x ) ] 2 + ... ) u ( x + h ) − u ( x ) ( n u ( x ) ) ′ = h → 0 lim [ h u ( x + h ) − u ( x ) . n [ u ( x + h ) ] n − 1 + n [ u ( x + h ) ] n − 2 . n u ( x ) + n [ u ( x + h ) ] n − 3 . n [ u ( x ) ] 2 + ... 1 ] ( n u ( x ) ) ′ = h → 0 lim h u ( x + h ) − u ( x ) . h → 0 lim n [ u ( x + h ) ] n − 1 + n [ u ( x + h ) ] n − 2 . n u ( x ) + n [ u ( x + h ) ] n − 3 . n [ u ( x ) ] 2 + ... 1 ( n u ( x ) ) ′ = u ′ ( x ) . n [ u ( x + 0 ) ] n − 1 + n [ u ( x + 0 ) ] n − 2 . n u ( x ) + n [ u ( x + 0 ) ] n − 3 . n [ u ( x ) ] 2 + ... 1 ( n u ( x ) ) ′ = u ′ ( x ) . n [ u ( x ) ] n − 1 + n [ u ( x ) ] n − 2 . n u ( x ) + n [ u ( x ) ] n − 3 . n [ u ( x ) ] 2 + ... 1 ( n u ( x ) ) ′ = u ′ ( x ) . n [ u ( x ) ] n − 1 + n [ u ( x ) ] n − 2 . u ( x ) + n [ u ( x ) ] n − 3 . [ u ( x ) ] 2 + ... 1 ( n u ( x ) ) ′ = u ′ ( x ) . n [ u ( x ) ] n − 1 + n [ u ( x ) ] n − 2 + 1 + n [ u ( x ) ] n − 3 + 2 + ... 1 ( n u ( x ) ) ′ = u ′ ( x ) . n tane n [ u ( x ) ] n − 1 + n [ u ( x ) ] n − 1 + n [ u ( x ) ] n − 1 + ... 1 ( n u ( x ) ) ′ = u ′ ( x ) . n . n [ u ( x ) ] n − 1 1 ( n u ( x ) ) ′ = n . n [ u ( x ) ] n − 1 u ′ ( x ) u ( x ) = u u ′ ( x ) = u ′ ( n u ) ′ = n . n u n − 1 u ′ 2. Yol y = n u ( x ) y n = ( n u ( x ) ) n y n = u ( x ) ( y n ) ′ = u ′ ( x )
( u n ) ′ = n . ( u ) n − 1 . u ′
n . y n − 1 . y ′ = u ′ ( x )
y ′ = n . y n − 1 u ′ ( x )
y ′ = n . ( n u ( x ) ) n − 1 u ′ ( x )
y ′ = n . n [ u ( x ) ] n − 1 u ′ ( x )
( n u ( x ) ) ′ = n . n [ u ( x ) ] n − 1 u ′ ( x )
u ( x ) = u u ′ ( x ) = u ′ ( n u ) ′ = n . n u n − 1 u ′ 3. Yol n u ( x ) = [ u ( x ) ] n 1 l n n u ( x ) = l n [ u ( x ) ] n 1 l n n u ( x ) = n 1 . l n u ( x )
( l n n u ( x ) ) ′ = [ n 1 . l n u ( x ) ] ′
( l n u ) ′ = u u ′
n u ( x ) ( n u ( x ) ) ′ = n 1 . u ( x ) u ′ ( x )
n u ( x ) ( n u ( x ) ) ′ = n . u ( x ) u ′ ( x )
n u ( x ) n u ( x ) ( n u ( x ) ) ′ = n u ( x ) n . u ( x ) n [ u ( x ) ] n − 1 1
( n u ( x ) ) ′ = n . n [ u ( x ) ] n − 1 u ′ ( x )
u ( x ) = u u ′ ( x ) = u ′ ( n u ) ′ = n . n u n − 1 u ′