Tan 2x'in türevi 2.(1+tan² 2x)'tir.
Tan 2x'in Türevi Nedir ? Tan 2x'in türevi 2.(1+tan² 2x)'tir.
( t an 2 x ) ′ = 2. ( 1 + t a n 2 2 x )
d x d ( t an 2 x ) = 2. ( 1 + t a n 2 2 x )
Tan 2x'in Türevinin İspatı 1. Yol f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( t an 2 x ) ′ = h → 0 lim h t an 2 ( x + h ) − t an 2 x
( t an 2 x ) ′ = h → 0 lim h t an ( 2 x + 2 h ) − t an 2 x
t an ( p + q ) = 1 − t an p . t an q t an p + t an q
( t an 2 x ) ′ = h → 0 lim h 1 − t an 2 x . t an 2 h t an 2 x + t an 2 h − t an 2 x
( t an 2 x ) ′ = h → 0 lim h 1 − t an 2 x . t an 2 h t an 2 x + t an 2 h − t an 2 x . ( 1 − t an 2 x . t an 2 h )
( t an 2 x ) ′ = h → 0 lim h 1 − t an 2 x . t an 2 h t an 2 x + t an 2 h − t an 2 x + t a n 2 2 x . t an 2 h
( t an 2 x ) ′ = h → 0 lim h 1 − t an 2 x . t an 2 h t an 2 h + t a n 2 2 x . t an 2 h
( t an 2 x ) ′ = h → 0 lim h 1 − t an 2 x . t an 2 h t an 2 h . ( 1 + t a n 2 2 x )
( t an 2 x ) ′ = h → 0 lim [ h 1 . 1 − t an 2 x . t an 2 h t an 2 h . ( 1 + t a n 2 2 x ) ]
( t an 2 x ) ′ = h → 0 lim h . ( 1 − t an 2 x . t an 2 h ) t an 2 h . ( 1 + t a n 2 2 x )
( t an 2 x ) ′ = h → 0 lim 2. h . ( 1 − t an 2 x . t an 2 h ) 2. t an 2 h . ( 1 + t a n 2 2 x )
( t an 2 x ) ′ = 2. h → 0 lim 2 h . ( 1 − t an 2 x . t an 2 h ) t an 2 h . ( 1 + t a n 2 2 x )
( t an 2 x ) ′ = 2. h → 0 lim ( 2 h t an 2 h . 1 − t an 2 x . t an 2 h 1 + t a n 2 2 x )
( t an 2 x ) ′ = 2. h → 0 lim 2 h t an 2 h . h → 0 lim 1 − t an 2 x . t an 2 h 1 + t a n 2 2 x
h → 0 ( 2 h = h )
( t an 2 x ) ′ = 2. h → 0 lim h t an h . h → 0 lim 1 − t an 2 x . t an h 1 + t a n 2 2 x
t → 0 l i m t t an t = 1
( t an 2 x ) ′ = 2.1. 1 − t an 2 x . t an 0 1 + t a n 2 2 x
t an 0 = 0
( t an 2 x ) ′ = 2.1. 1 − t an 2 x .0 1 + t a n 2 2 x
( t an 2 x ) ′ = 2.1. 1 − 0 1 + t a n 2 2 x
( t an 2 x ) ′ = 2.1. 1 1 + t a n 2 2 x
( t an 2 x ) ′ = 2.1. ( 1 + t a n 2 2 x )
( t an 2 x ) ′ = 2. ( 1 + t a n 2 2 x )
2. Yol f ′ ( x ) = h → 0 lim h f ( x + h ) − f ( x ) ( t an 2 x ) ′ = h → 0 lim h t an 2 ( x + h ) − t an 2 x ( t an 2 x ) ′ = h → 0 lim h t an ( 2 x + 2 h ) − t an 2 x t an x = cos x s in x
( t an 2 x ) ′ = h → 0 lim h cos ( 2 x + 2 h ) s in ( 2 x + 2 h ) − cos 2 x s in 2 x
( t an 2 x ) ′ = h → 0 lim h cos 2 x . cos ( 2 x + 2 h ) s in ( 2 x + 2 h ) . cos 2 x − cos ( 2 x + 2 h ) . s in 2 x
s in p . cos q − cos p . s in q = s in ( p − q )
( t an 2 x ) ′ = h → 0 lim h cos 2 x . cos ( 2 x + 2 h ) s in ( 2 x + 2 h − 2 x )
( t an 2 x ) ′ = h → 0 lim h cos 2 x . cos ( 2 x + 2 h ) s in 2 h
( t an 2 x ) ′ = h → 0 lim [ h 1 . cos 2 x . cos ( 2 x + 2 h ) s in 2 h ]
( t an 2 x ) ′ = h → 0 lim h . cos 2 x . cos ( 2 x + 2 h ) s in 2 h
( t an 2 x ) ′ = h → 0 lim 2. h . cos 2 x . cos ( 2 x + 2 h ) 2. s in 2 h
( t an 2 x ) ′ = 2. h → 0 lim 2 h . cos 2 x . cos ( 2 x + 2 h ) s in 2 h
( t an 2 x ) ′ = 2. h → 0 lim [ 2 h s in 2 h . cos 2 x . cos ( 2 x + 2 h ) 1 ]
( t an 2 x ) ′ = 2. h → 0 lim 2 h s in 2 h . h → 0 lim cos 2 x . cos ( 2 x + 2 h ) 1
h → 0 ( 2 h = h )
( t an 2 x ) ′ = 2. h → 0 lim h s in h . h → 0 lim cos 2 x . cos ( 2 x + h ) 1
t → 0 l i m t s in t = 1
( t an 2 x ) ′ = 2.1. cos 2 x . cos ( 2 x + 0 ) 1
( t an 2 x ) ′ = 2.1. cos 2 x . cos 2 x 1
( t an 2 x ) ′ = co s 2 2 x 2.1.1
( t an 2 x ) = co s 2 2 x 2
( t an 2 x ) ′ = 2. co s 2 2 x 1
( t an 2 x ) ′ = 2. ( cos 2 x 1 ) 2
cos x 1 = sec x
( t an 2 x ) ′ = 2. se c 2 2 x
( t an 2 x ) ′ = 2. ( 1 + t a n 2 2 x ) = co s 2 2 x 2 = 2. se c 2 2 x