trigonometrik fonksiyonların integrali

Feb 19, 20211 dakika





1. Sinüs İntegrali



1. ∫ sin(x) dx = -cos(x) + c



2. ∫ sin(ax + b) dx = -1/a . cos(ax + b) + c (a ≠ 0)



3. ∫ dx/sin(x) = ln|tan(x/2)| + c



4. ∫ dx/sin(ax + b) = 1/a . ln|tan(ax + b/2)| + c (a ≠ 0)



2. Kosinüs İntegrali



1. ∫ cos(x) dx = sin(x) + c



2. ∫ cos(ax + b) dx = 1/a . sin(ax + b) + c (a ≠ 0)



3. ∫ dx/cos(x) = ln|tan(x/2 + π/4)| + c



4. ∫ dx/cos(ax + b) = 1/a . ln|tan[(ax + b)/2 + π/4]| + c (a ≠ 0)



3. Tanjant İntegrali



1. ∫ tan(x) dx = -ln|cos(x)| + c = ln|sec(x)| + c



2. ∫ tan(ax + b) dx = -1/a . ln|cos(ax + b)| + c = 1/a . ln|sec(ax + b)| + c (a ≠ 0)



3. ∫ dx/tan(x) = ln|sinx| + c



4. ∫ dx/tan(ax + b) = 1/a . ln|sin(ax + b)| + c (a ≠ 0)



4. Kotanjant İntegrali



1. ∫ cot(x) dx = ln|sin(x)| + c



2. ∫ cot(ax + b) dx = 1/a . ln|sin(ax + b)| + c (a ≠ 0)



3. ∫ dx/cot(x) = -ln|cos(x)| + c = ln|sec(x)| + c



4. ∫ dx/cot(ax + b) = -1/a . ln|cos(ax + b)| + c = 1/a . ln|sec(ax + b)| + c (a ≠ 0)



5. Sekant İntegrali



1. ∫ sec(x) dx = ln|sec(x) + tan(x)| + c



2. ∫ sec(ax + b) dx = 1/a . ln|sec(ax + b) + tan(ax + b)| + c (a ≠ 0)



3. ∫ dx/sec(x) = sin(x) + c



4. ∫ dx/sec(ax + b) = 1/a . sin(ax + b) + c (a ≠ 0)



6. Kosekant İntegrali



1. ∫ csc(x) dx = -ln|csc(x) + cot(x)| + c



2. ∫ csc(ax) dx = -1/a . ln|csc(ax + b) + cot(ax + b)| + c (a ≠ 0)



3. ∫ dx/csc(x) = -cos(x) + c



4. ∫ dx/csc(ax + b) = -1/a . cos(ax + b) + c (a ≠ 0)

Küçük bir destek binlerce beğeniden daha değerlidir
https://bylge-images.s3.amazonaws.com/banff-4331689_1920.jpg
Pow

Fizik, Kimya, Matematik, Tarih ve Genel Kültür Sevdiricisi

Bylge Icon
Bylge Icon